In situ p-block protective layer plating in carbonate-based electrolytes enables stable cell cycling in anode-free lithium batteries (2024)

  • Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article CAS PubMed Google Scholar

  • Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article CAS Google Scholar

  • Yang, P. & Tarascon, J.-M. Towards systems materials engineering. Nat. Mater. 11, 560–563 (2012).

    Article CAS PubMed Google Scholar

  • Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article CAS Google Scholar

  • Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    Article CAS Google Scholar

  • Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article CAS PubMed Google Scholar

  • Chen, J. et al. Electrolyte design for Li metal-free Li batteries. Mater. Today 39, 118–126 (2020).

    Article Google Scholar

  • Qian, J. et al. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016).

    Article CAS Google Scholar

  • Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article CAS Google Scholar

  • Tian, Y. et al. Recently advances and perspectives of anode-free rechargeable batteries. Nano Energy 78, 105344 (2020).

    Article CAS Google Scholar

  • Huang, C. J. et al. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 12, 1452 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article CAS Google Scholar

  • Genovese, M., Louli, A. J., Weber, R., Hames, S. & Dahn, J. R. Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. J. Electrochem. Soc. 165, A3321–A3325 (2018).

    Article CAS Google Scholar

  • Tong, Z., Bazri, B., Hu, S.-F. & Liu, R.-S. Interfacial chemistry in anode-free batteries: challenges and strategies. J. Mater. Chem. A 9, 7396–7406 (2021).

    Article CAS Google Scholar

  • Nanda, S., Gupta, A. & Manthiram, A. Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11, 2000804 (2020).

    Article Google Scholar

  • Beyene, T. T. et al. Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries. J. Electrochem. Soc. 166, A1501–A1509 (2019).

    Article CAS Google Scholar

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article CAS Google Scholar

  • Li, S. et al. A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. J. Mater. Chem. A 9, 7667–7674 (2021).

    Article CAS Google Scholar

  • Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    Article PubMed PubMed Central Google Scholar

  • Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article CAS Google Scholar

  • Zheng, J. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article CAS Google Scholar

  • Tu, Z. et al. Fast ion transport at solid–solid interfaces in hybrid battery anodes. Nat. Energy 3, 310–316 (2018).

    Article CAS Google Scholar

  • Pathak, R. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Choudhury, S. et al. Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070–13077 (2017).

    Article CAS Google Scholar

  • Nayak, P. K., Yang, L., Brehm, W. & Adelhelm, P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chem. Int. Ed. 57, 102–120 (2018).

    Article CAS Google Scholar

  • Soulmi, N. et al. Sn(TFSI)2 as a suitable salt for the electrodeposition of nanostructured Cu6Sn5–Sn composites obtained on a Cu electrode in an ionic liquid. Inorg. Chem. Front. 6, 248–256 (2019).

    Article CAS Google Scholar

  • Biswal, P. et al. The early-stage growth and reversibility of Li electrodeposition in Br-rich electrolytes. Proc. Natl Acad. Sci. USA 118, 2012071118 (2021).

    Article Google Scholar

  • Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article CAS Google Scholar

  • Zhang, S. S., Fan, X. & Wang, C. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochim. Acta 258, 1201–1207 (2017).

    Article CAS Google Scholar

  • Luo, Z. et al. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Mater. 27, 124–132 (2020).

    Article Google Scholar

  • Peled, E., Golodnitsky, D. & Ardel, G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J. Electrochem. Soc. 144, L208–L210 (1997).

    Article CAS Google Scholar

  • Moradabadi, A., Bakhtiari, M. & Kaghazchi, P. Effect of anode composition on solid electrolyte interphase formation. Electrochim. Acta 213, 8–13 (2016).

    Article CAS Google Scholar

  • Li, J.-T. et al. XPS and ToF-SIMS study of electrode processes on Sn−Ni alloy anodes for Li-ion batteries. J. Phys. Chem. C 115, 7012–7018 (2011).

    Article CAS Google Scholar

  • Youn, D. H., Heller, A. & Mullins, C. B. Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode. Chem. Mater. 28, 1343–1347 (2016).

    Article CAS Google Scholar

  • Deng, Z. et al. Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells. Joule 4, 2017–2029 (2020).

    Article CAS Google Scholar

  • Porion, P. et al. Comparative study on transport properties for LiFAP and LiPF6 in alkyl-carbonates as electrolytes through conductivity, viscosity and NMR self-diffusion measurements. Electrochim. Acta 114, 95–104 (2013).

    Article CAS Google Scholar

  • Gottlieb, H. E., Kotlyar, V. & Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 62, 7512–7515 (1997).

    Article CAS PubMed Google Scholar

  • Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).

    Article CAS PubMed Google Scholar

  • Tang, M. et al. Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging. Nat. Commun. 7, 13284 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  • Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Article Google Scholar

  • Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).

    Article CAS Google Scholar

  • Frerichs, J. E. et al. 119Sn and 7Li solid-state NMR of the binary Li–Sn intermetallics: structural fingerprinting and impact on the isotropic 119Sn shift via DFT calculations. Chem. Mater. 33, 3499–3514 (2021).

    Article CAS Google Scholar

  • Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    Article CAS PubMed Google Scholar

  • Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    Article CAS PubMed Google Scholar

  • Zhong, Y. et al. Mechanistic insights into fast charging and discharging of the sodium metal battery anode: a comparison with lithium. J. Am. Chem. Soc. 143, 13929–13936 (2021).

    Article CAS PubMed Google Scholar

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article CAS Google Scholar

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article CAS PubMed Google Scholar

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article Google Scholar

  • Frisch, M. J. et al. Gaussian 16, revision C.01 (Gaussian, 2016).

  • He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. npj Comput. Mater. 4, 18 (2018).

    Article Google Scholar

  • Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article Google Scholar

  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general Amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    Article CAS PubMed Google Scholar

  • Zheng, S. et al. VFFDT: a new software for preparing AMBER force field parameters for metal-containing molecular systems. J. Chem. Inf. Model. 56, 811–818 (2016).

    Article CAS PubMed Google Scholar

  • Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article CAS Google Scholar

  • Yang, M., Shi, Z., He, Z. & Wang, D. Unraveling electrolyte solvation architectures for high-performance lithium-ion batteries. Sci. China Technol. Sci. 67, 958–964 (2024).

    Article CAS Google Scholar

  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article Google Scholar

  • Shi, J. et al. Atomistic configurations of EC and DEC solvents and their related surface models. figshare https://doi.org/10.6084/m9.figshare.26340670.v1 (2024).

  • In situ p-block protective layer plating in carbonate-based electrolytes enables stable cell cycling in anode-free lithium batteries (2024)

    References

    Top Articles
    Eggnog Recipe (Non-Alcoholic)
    Lord Rhys Chocolate Mead Recipe
    Jps Occupational Health Clinic
    Fresno Farm And Garden By Owner
    Raleigh Craigs List
    San Fernando Craigslist Pets
    Craigslist Cassopolis Mi
    Pulse Point Oxnard
    Spectrum Store Kansas City Photos
    Busted Mugshots Rappahannock Regional Jail
    Butte County Court Oroville Ca
    A Comprehensive Guide to Redgif Downloader
    What Is Opm1 Treas 310 Deposit
    Spacebar Counter - Space Bar Clicker Test
    Stitch And Tie Promo Code Reddit
    Telegram X (Android)
    Adt First Responder Discount
    5Ive Brother Cause Of Death
    Ironman Kona Tracker
    Usccb 1 John 4
    April 7 Final Jeopardy
    Wdef Schedule
    Craigslist Gaming Chair
    All Obituaries | Dante Jelks Funeral Home LLC. | Birmingham AL funeral home and cremation Gadsden AL funeral home and cremation
    Dovob222
    Meritain Prior Authorization List
    Magicseaweed Bob Hall
    Craigslist Tampa: Your Ultimate Guide To Online Classifieds
    Virtualrewardcenter.com/Activate
    Parent Portal Support | Hamilton-Wentworth District School Board
    2014 Chevy Malibu Belt Diagram
    Cargurus Honda Accord
    Foley Housing Authority Photos
    Susan Dey Today: A Look At The Iconic Actress And Her Legacy
    Lincoln Financial Field Section 110
    Dki Brain Teaser
    Jan Markell Net Worth
    Kirby D. Anthoney Now
    Laurin Funeral Home
    Finastra Gfx
    600 Aviator Court Vandalia Oh 45377
    Calverton-Galway Local Park Photos
    Vitamin-K-Lebensmittel – diese enthalten am meisten! | eatbetter: gesunde, einfache Rezepte & Tipps für jeden Tag
    Warranty Killer Performance Reviews
    Hughie Francis Foley
    Saqify Leaks
    Discord Id Grabber
    The 7 best games similar to Among Us for Android - Sbenny’s Blog
    palm springs free stuff - craigslist
    Family Court Forms | Maricopa County Superior Court
    Richard Grieve Judge Judy
    How to Screenshot on Cash App: A Complete Guide
    Latest Posts
    Article information

    Author: Saturnina Altenwerth DVM

    Last Updated:

    Views: 6141

    Rating: 4.3 / 5 (64 voted)

    Reviews: 87% of readers found this page helpful

    Author information

    Name: Saturnina Altenwerth DVM

    Birthday: 1992-08-21

    Address: Apt. 237 662 Haag Mills, East Verenaport, MO 57071-5493

    Phone: +331850833384

    Job: District Real-Estate Architect

    Hobby: Skateboarding, Taxidermy, Air sports, Painting, Knife making, Letterboxing, Inline skating

    Introduction: My name is Saturnina Altenwerth DVM, I am a witty, perfect, combative, beautiful, determined, fancy, determined person who loves writing and wants to share my knowledge and understanding with you.